equation002

 

 

 

\( V_{ g } \)
 

\( \Delta P \)   \( ( P_{ out } -P_{ in }) \)   \( P_{ out } \)  \( P_{ in } \)
 

\( n \)   \( n \)

\( q_{ v}  \)   \( \displaystyle\frac{ V_{ g } \cdot n \cdot \eta_{ v }}{ 10^3 } \)

\( T \)   \( \displaystyle\frac{ V_{ g } \cdot \Delta p }{ 2 \pi \cdot \eta_{ mh } } \)

\( \eta_{ v } \)   \( \displaystyle\frac{ q_{ v } \cdot 10^3 }{ V_{ g } \cdot n } \)

\( \eta_{ mh } \)   \( \displaystyle\frac{ V_{ g } \cdot \Delta p }{ 2 \pi \cdot T } \)

\( \eta_{ t } \)   \( \eta_{ v } \cdot \eta_{ mh } \)

\( \displaystyle\frac{ q_{ v } \cdot \Delta p \cdot 10^3 }{ 2 \pi \cdot T \cdot n } \)

\( P_{ h } \)   \( \displaystyle\frac{ 2 \pi \cdot T \cdot n }{ 60000 } \)

\( \displaystyle\frac{ q_{ v } \cdot \Delta p }{ 60 \cdot \eta_{ t } } \)

 

ゾンマーフェルト数

\( W = 6 \eta UL \left( \displaystyle\frac{ r }{ c } \right) ^2 \displaystyle\frac{ 12 \pi \epsilon }{ ( 2 + \epsilon^2 ) \sqrt{ 1 – \epsilon^2 }} \)

\( W = \eta UL \left( \displaystyle\frac{ r }{ c } \right) ^2 \displaystyle\frac{ 12 \pi \epsilon }{ ( 2 + \epsilon^2 ) \sqrt{ 1 – \epsilon^2 }} \)

\( S \equiv \left( \displaystyle\frac{ r }{ c } \right) ^2\displaystyle\frac{ \eta N }{ p_{ m }} = \displaystyle\frac{ ( 2 + \epsilon^2 ) \sqrt{ 1 – \epsilon^2 }}{ 12 \pi^2 \epsilon } \)

 

\( \displaystyle\frac{ \Delta R }{ R } = constant \)

\( P = k \ln \left( \displaystyle\frac{ I }{ I_{ 0 } } \right) \)

 

\( \epsilon =\displaystyle\frac{ \Delta L }{ L } \)

\( \epsilon^{ ‘ } =\displaystyle\frac{ \Delta D }{ D } \)

\( \nu = – \displaystyle\frac{ \epsilon^{ ‘ } }{ \epsilon } \)